Efficient (Hierarchical) Inner Product Encryption Tightly Reduced from the Decisional Linear Assumption

2012 / 8 / 21

Tatsuaki Okamoto (NTT), <u>Katsuyuki Takashima (Mitsubishi Electric).</u>

To appear in IEICE Trans. Fundamentals

Inner Product Encryption (IPE) [KSW08]

$$f_{\vec{v}}(\vec{x}) = 1 \text{ iff } \vec{x} \cdot \vec{v} = 0$$

 $f_{\vec{v}}$: predicate with $\vec{v} \in \mathbb{F}_q^n$, $\vec{x} \in \mathbb{F}_q^n$: attribute

- Setup: pk: (master) public key, sk: (master) secret key
- KeyGen(pk, sk, \vec{v}): sk $_{\vec{v}}$: secret key for \vec{v}
- ▶ Enc(pk, \vec{x}, m): $c_{\vec{x}}$: ciphertext for \vec{x}
- ▶ $Dec(pk, sk_{\vec{v}}, c)$: plaintext m or \perp

m can be decrypted iff $f_{\vec{v}}(\vec{x}) = 1$, i.e., $\vec{x} \cdot \vec{v} = 0$

Fully Attribute-Hiding Security of IPE

No additional information on \vec{x} is revealed to anyone, (even to any person with a matching key $sk_{\vec{v}}$, i.e., $f_{\vec{v}}(\vec{x}) = 1$.)

4

Fully Attribute-Hiding Security of IPE

No additional information on \vec{x} is revealed to anyone, (even to any person with a matching key $sk_{\vec{v}}$, i.e., $f_{\vec{v}}(\vec{x}) = 1$.)

Previous Works (Pairing-Based IPE)

- [KSW08, LOS+10, OT09, OT10, P11]: Aim at better security, e.g., adaptive security, fully-attribute-hiding, weaker (standard) assumptions
- [OT12]: Adaptively secure and fully attribute-hiding IPE under the DLIN assumption

From a practical point, the performance is not so satisfactory, e.g., ciphertext includes 4n + 2 elements of \mathbb{G} , the security reduction is not tight.

<u>Our Result</u>

Proposed IPE

- Fully-attribute-hiding and selectively secure from DLIN,
- > Almost the shortest ciphertext among existing attributehiding IPEs, i.e., n + 4 elements of \mathbb{G} and 1 element of \mathbb{G}_T ,
- > The security reduction is (almost) tight.

<u>Comparison</u>

highest security !

	KSW08	OT09	Park11	OT12		Proposed	
				(basic)	(variant) 🗸	(basic)	(variant)
Security	selective &	selective &	selective &	adaptive &	adaptive &	selective &	selective &
	fully-AH	weakly-AH	weakly-AH	fully-AH	fully-AH	fully-AH	fully-AH
Order of \mathbb{G}	composite	prime	prime	prime	prime	prime	prime
Assump.	2 variants of GSD	2 variants of DSP	DLIN & DBDH	DLIN	DLIN	DLIN	DLIN
Reduction factor	6	2	6	$3\nu + 2$	$3\nu + 2$	2	2
PK size	$O(n) \mathbb{G} $	$O(n^2) \mathbb{G} $	$O(n) \mathbb{G} $	$O(n^2) \mathbb{G} $	$O(n) \mathbb{G} $	$O(n^2) \mathbb{G} $	$O(n) \mathbb{G} $
SK size	$(2n+1) \mathbb{G} $	$(n+3) \mathbb{G} $	$(4n+2) \mathbb{G} $	$ (4n+2) \mathbb{G} $	$11 \mathbb{G} $	$(n+4) \mathbb{G} $	$6 \mathbb{G} $
CT size	$ \begin{array}{ c c } \hline (2n+1) \mathbb{G} \\ + \mathbb{G}_T \end{array} $	$\frac{(n+3) \mathbb{G} }{+ \mathbb{G}_T }$	$\frac{(4n+2) \mathbb{G} }{+ \mathbb{G}_T }$	$ \begin{array}{ c c } \hline (4n+2) \mathbb{G} \\ + \mathbb{G}_T \end{array} $	$\frac{(5n+1) \mathbb{G} }{+ \mathbb{G}_T }$	$(n+4) \mathbb{G} + \mathbb{G}_T $	$\frac{(n+4) \mathbb{G} }{+ \mathbb{G}_T }$

n: dimension of attribute vector

 $\boldsymbol{\nu}: \ \text{the maximum number of key-queries}$

 $|\mathbb{G}|, |\mathbb{G}_T|$: size of an element of \mathbb{G}, \mathbb{G}_T

AH : attribute-hiding

PK, SK, CT : public key, secret key, ciphertext

GSD, DSP, DBDH : general subgroup decision, decisional subspace problem,

decisional bilinear Diffie-Hellman

fully-AH tight reduction from DLIN shortest CT

Thank You !