Serge Vaudenay

http://lasec.epfl.ch/

EASEC

encryption based on card shuffling

Every Day I'm Shuffling

Tung Hoang, Morris, Rogaway; Crypto 2012

proc
$$E_{KF}(X)$$

key: $K_1, \ldots, K_r, F_1, \ldots, F_r$
1: **for** $i = 1$ to r **do**
2: $X' \leftarrow K_i \oplus X$
3: $\hat{X} \leftarrow \max(X, X')$
4: if $F_i(\hat{X}) = 1$ then $X \leftarrow X'$
5: **end for**

6: return X

secure when KF is uniformly distributed

proc
$$E_{KL}(X)$$

key: $K_1, \dots, K_r, L_1, \dots, L_r$
1: for $i = 1$ to r do
2: $X' \leftarrow K_i \oplus X$
3: $\hat{X} \leftarrow \max(X, X')$
4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$

- 5: end for
- 6: return X

- proc $E_{KL}(X)$ key: $K_1, \dots, K_r, L_1, \dots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$
 - 5: end for
 - 6: return X
 - in round *i*, let *j* be the highest index such that $(K_i)_j = 1$
 - $\hat{X} = \max(X, X \oplus K_i) = X \oplus \overline{\operatorname{bit}_j(X)} K_i$
 - $X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$
 - these functions have algebraic degree 1 in X
 - encryption is linear!

- proc $E_{KL}(X)$ key: $K_1, \dots, K_r, L_1, \dots, L_r$ 1: **for** i = 1 to r **do** 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$
 - 5: **end for**
 - 6: return X
 - in round *i*, let *j* be the highest index such that $(K_i)_j = 1$

•
$$\hat{X} = \max(X, X \oplus K_i) = X \oplus \overline{\operatorname{bit}_j(X)} K_i$$

•
$$X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$$

- these functions have algebraic degree 1 in X
- encryption is linear!

- proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$ 5: end for
 - 6: return X
 - in round *i*, let *j* be the highest index such that $(K_i)_j = 1$

•
$$\hat{X} = \max(X, X \oplus K_i) = X \oplus \overline{\operatorname{bit}_j(X)} K_i$$

- $X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$
- these functions have algebraic degree 1 in X
- encryption is linear!

- proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$
 - 5: end for
 - 6: return X
 - in round *i*, let *j* be the highest index such that $(K_i)_j = 1$

•
$$\hat{X} = \max(X, X \oplus K_i) = X \oplus \overline{\operatorname{bit}_j(X)} K_i$$

- $X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$
- these functions have algebraic degree 1 in X
- encryption is linear!

- proc $E_{KL}(X)$ key: $K_1, \dots, K_r, L_1, \dots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$
 - 5: end for
 - 6: return X
 - in round *i*, let *j* be the highest index such that $(K_i)_j = 1$

•
$$\hat{X} = \max(X, X \oplus K_i) = X \oplus \overline{\operatorname{bit}_j(X)} K_i$$

- $X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$
- these functions have algebraic degree 1 in X
- encryption is linear!

• certainly not: still secure if KF is uniform

• open questions:

could it be secure with a distribution over a smaller set? could we replace max by another symmetric function?

proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: **for** i = 1 to r **do** 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow (X + X')$ mod 2^ℓ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow \hat{X}$ 5: **end for**

6: return X

an idea by Henri Gilbert:

 $F_i(x) =$ majority $(L_i \cdot x, L'_i \cdot x, L'_i \cdot x)$

- certainly not: still secure if KF is uniform
- open questions:

could it be secure with a distribution over a smaller set?

could we replace max by another symmetric function?

proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow (X + X') \mod 2^{\ell}$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$ 5: end for 6: return X an idea by Henri Gilbert:

 $F_i(x) =$ majority $(L_i \cdot x, L'_i \cdot x, L'_i \cdot x)$

- certainly not: still secure if KF is uniform
- open questions:

could it be secure with a distribution over a smaller set? could we replace max by another symmetric function?

proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow (X + X') \mod 2^{\ell}$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$ 5: end for

6: return X

an idea by Henri Gilbert:

 $F_i(x) =$ majority $(L_i \cdot x, L'_i \cdot x, L''_i \cdot x)$

- certainly not: still secure if KF is uniform
- open questions:

could it be secure with a distribution over a smaller set? could we replace max by another symmetric function?

proc $E_{KL}(X)$ key: $K_1, \ldots, K_r, L_1, \ldots, L_r$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow (X + X') \mod 2^{\ell}$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$ 5: end for 6: return X an idea by Henri Gilbert:

 $F_i(x) =$ majority $(L_i \cdot x, L'_i \cdot x, L''_i \cdot x)$